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A. 1D Audio Fitting Task
Background & Settings. Fitting 1D audio data can be for-
mulated as Fθ(x) : (t) 7→ (a), where a represents the am-
plitude value at time step t. For this task, we utilized the
test.clean split from LibriSpeech [35] dataset, with each au-
dio sample truncated to the initial 5 seconds at a 16,000
Hz sampling rate. Following Siamese SIREN [23], we
configured both ω and ω0 to 100 in the SIREN architec-
ture. The quality of reconstructed audio was evaluated us-
ing SI-SNR, STOI [53], PESQ [44], and Mean Square Er-
ror (MSE) metrics. Due to task incompatibility issues ex-
hibited by EGRA [15], Expan. [63], and Soft Mining [21],
we restricted our experiments to standard training, uniform
sampling, INT [61], and its variants.
Results. As shown in Table 6, our method simultaneously
achieves reduced training time and enhanced reconstruction
quality per iteration compared to INT and its variants, con-
sistently outperforming standard training across all metrics.
Fig. 7 illustrates the reconstruction error under a fixed 30-
second training duration, comparing standard training (red)
with our method (purple). Our approach demonstrates no-
tably lower error rates than standard training. The Mel spec-
trogram visualization in Fig. 6 further validates the effec-
tiveness of our method.

B. 2D Text Fitting Task
Background & Settings. Fitting 2D synthesized text image
data can be formulated as Fθ(x) : (x, y) 7→ (r, g, b). The
dataset in this experiment was obtained from [54]. Such
synthesized text data differs from natural images in its in-
herently imbalanced distribution and limited pixel intensity
variety. For example, a synthesized text image containing
three words might only have four intensity values (three
text colors and one background color), unlike natural im-
ages with abundant color variations. Given the task’s rel-
ative simplicity, we set the total iterations T = 1000 and
used SIREN as the backbone, while maintaining other set-
tings consistent with Sec. 4.2.
Results. Table 7 demonstrates that our method achieves the
most significant efficiency improvements compared to ex-
isting sampling methods [15, 21, 61, 63] on 2D text fitting
tasks. Table 8 verifies our method’s compatibility across
different architectures [28, 41, 50, 54]. Furthermore, Fig. 8
presents reconstructed texts after 20 seconds of training us-
ing various acceleration methods. Since INT† shows de-
graded performance in this task, we used INT (dense) for
comparison. The highlighted regions (red boxes) demon-
strate our method’s superior reconstruction quality.

Figure 6. Visual comparison of Mel spectrogram reconstructions
with 30-second training duration. Due to spectral bias, INRs ex-
hibit lower expressiveness in high-frequency regions compared to
low-frequency regions. EVOS integration can alleviate this limi-
tation under fixed time constraints.

Figure 7. Visual comparison of reconstruction error for 1D audio
fitting with 30-second training duration. Red and Purple lines
represent standard training and our method, respectively.

SI-SNR STOI PESQ MSE Time
Strategies ↑ ↑ ↓ ↓ (e-4) ↓ (sec)

Standard 11.21 0.896 1.387 2.835 47.62

Uniform. 9.88 0.855 1.274 4.938 28.47

INT [61] 11.62 0.904 1.307 2.410 31.36
INT [61]⋆ 12.14 0.908 1.409 2.067 45.80
INT [61]† 11.79 0.905 1.394 2.233 33.42

EVOS 12.35 0.910 1.411 2.014 29.44
EVOS 12.95 0.921 1.449 1.660 31.63
⋆ denotes INT (dense.)

† denotes the best-performing variant reported in INT [61].

Table 6. Comparison of sampling strategies on 1D audio fitting.
Forest : the best performance.

C. 2D Image Fitting Task
Settings. We evaluated EVOS on the widely used Kodak
dataset [14], which comprises 24 natural images at 768 ×



PSNR SSIM LPIPS MSE Time
Strategies ↑ ↑ ↓ ↓ (e-3) ↓ (sec)

Standard 35.15 0.986 0.022 1.527 35.89

Uniform. 33.73 0.983 0.031 2.118 20.68
EGRA [15] 34.07 0.983 0.029 1.979 21.01
Expan. [63] 36.92 0.984 0.017 1.043 20.33
Soft. [21] 37.01 0.981 0.144 1.053 22.18

INT [61]⋆ 36.76 0.989 0.155 1.088 31.58
INT [61]† 35.59 0.987 0.020 1.389 24.75

EVOS 37.42 0.985 0.016 1.002 24.15
⋆ denotes INT (dense.)

† denotes the best-performing variant reported in INT [61].

Table 7. Comparison of sampling strategies on 2D synthesized text
fitting. Forest : the best performance.

PSNR SSIM LPIPS MSE Time
Strategies ↑ ↑ ↓ ↓ (e-3) ↓ (sec)

PEMLP [54] 34.64 0.977 0.036 1.944 30.67
+EVOS 37.80 0.983 0.025 1.138 18.83

SIREN [50] 35.15 0.986 0.022 1.527 35.89
+EVOS 37.42 0.985 0.016 1.002 24.15

GAUSS [41] 36.97 0.986 0.013 1.946 50.44
+EVOS 39.28 0.992 0.005 1.066 31.09

FINER [28] 41.56 0.993 0.005 0.420 46.20
+EVOS 43.82 0.990 0.008 0.349 28.01

Table 8. Quantitative comparison across different backbones on
2D text fitting task. Mint : enhance both in efficiency & quality.

512 resolution, distinct from the DIV2K dataset [2] used
in Sec. 4. All experimental settings, including hyperpa-
rameters, backbones, and network architectures, strictly fol-
lowed those in Sec. 4.2. We compared reconstruction qual-
ity under fixed iterations to demonstrate our method’s ad-
vantages.
Results. As shown in Table 10, our method achieves state-
of-the-art efficiency compared to other sampling-based ac-
celeration methods. Specifically, under fixed iterations, our
approach reduces training time by 46.79% while improving
PSNR by 0.31 dB compared to standard training with con-
stant scheduler, and achieves 29.79% time reduction with
0.91 dB PSNR gains using step-wise scheduler. Notably,
training with only 50% of the data not only reduces compu-
tational cost but also improves per-iteration performance,
further supporting our findings in Sec. 4.2.

D. 3D Shape Fitting Task
Backgound & Settings. We used Signed Distance
Fields (SDF) to represent 3D shapes, a widely adopted ap-

Figure 8. Visual comparison for 2D text fitting task. We em-
ploy INT (dense.) rather than INT† due to the latter’s performance
degradation in this task. All experiments are conducted under con-
sistent conditions with a fixed training duration of 20 seconds.

5k 10k Time
Settings IoU ↑ CHD ↓ IoU ↑ CHD ↓ (sec) ↓

Standard 0.949 1.45e-6 0.967 6.65e-7 171.26

Uniform. 0.918 3.66e-4 0.965 1.13e-3 96.07

INT [61] 0.946 2.94e-6 0.962 1.96e-6 106.75
INT [61]⋆ 0.938 1.65e-5 0.956 1.52e-5 147.09
INT [61])† 0.951 1.59e-6 0.965 1.01e-6 115.28

EVOS 0.955 1.42e-6 0.965 8.92e-7 98.31
EVOS 0.955 1.44e-6 0.967 8.18e-7 106.02
⋆ denotes INT (dense.)

† denotes the best-performing variant reported in INT [61].

Table 9. Comparison of sampling strategies on 3D shape fitting.
CHD: CHamfer Distance. Forest : the best performance.

proach in computer graphics [20]. The fitting task can be
formulated as Fθ(x) : (x, y, z) 7→ (s), where (x, y, z) rep-
resents the coordinate of given points and s denotes the
signed distance to the surface. Following INT [61], we
employed an 8 × 256 MLP with SIREN architecture. We
evaluated our method on the Asian Dragon scene from the
Stanford 3D Scanning Repository [1]. The total iterations
were set to T = 10, 000, with other settings remaining con-
sistent with Sec. 4.2. Following [25], we sampled points
from the surface using coarse (Laplacian noise with vari-
ance 0.1) and fine (Laplacian noise with variance 0.001)
sampling procedures, randomly selecting 50,000 points per
iteration. For EVOS, due to the absence of suitable high-
frequency extractors for SDF, we temporarily disabled the
crossover component. Given the varying degrees of task
incompatibility exhibited by EGRA [15], Expan. [63], and
Soft Mining [21], we confined our experiment to standard



1k Iterations 2k Iterations 5k Iterations Time↓
Strategies PSNR ↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ (sec)

Standard 30.54 0.848 0.235 33.47 0.906 0.131 36.10 0.938 0.074 266.55

Uniform. 29.91 0.832 0.266 32.55 0.891 0.161 35.16 0.927 0.096 137.53
EGRA [15] 29.92 0.831 0.267 32.63 0.891 0.159 35.21 0.927 0.095 141.62
Expan. [63] 30.47 0.844 0.237 33.015 0.897 0.139 35.30 0.927 0.084 138.23
INT [61] (dense.) 30.92 0.853 0.229 33.61 0.906 0.129 36.08 0.936 0.074 230.76
INT [61] (incre.) 30.92 0.853 0.229 31.43 0.853 0.211 34.65 0.904 0.109 198.88
EVOS (proposed) 31.68 0.862 0.209 34.81 0.915 0.109 36.41 0.934 0.073 141.85

Uniform. 29.28 0.814 0.301 32.25 0.885 0.175 35.941 0.935 0.080 153.08
EGRA [15] 29.27 0.812 0.302 32.29 0.885 0.175 35.96 0.935 0.081 166.54
Expan. [63] 30.46 0.839 0.241 33.11 0.895 0.148 36.12 0.935 0.081 153.02
INT [61] (dense) 31.07 0.845 0.250 33.58 0.901 0.140 36.00 0.935 0.078 251.08
INT [61] (incre.)† 31.07 0.845 0.249 30.33 0.821 0.265 36.22 0.938 0.076 177.05
EVOS (proposed) 31.39 0.843 0.231 34.708 0.907 0.118 37.01 0.943 0.066 187.15

† denotes the best-performing variant reported in INT [61].

Table 10. Comparison of sampling strategies on Kodak datasets. Strategies without underlines employ constant scheduler (β = 0.5), while
underlined strategies implement step-wise scheduler. Forest : the best performance; Mint : exceeds standard training.

Figure 9. Visual comparison of 3D shape fitting with fixed 90-
second training.

training, uniform sampling, INT, and its variants.

Results. Table 9 demonstrates that EVOS achieves signif-
icant efficiency improvements compared to standard train-
ing, INT, and its variants. Our method maintains compa-
rable reconstructed quality while reducing training time by
38.10%. At 5,000 iterations, we achieve improvement in
IoU while maintaining acceleration benefits. Visual com-
parisons in Fig. 9 show reconstructed shapes after 90 sec-
onds of training, demonstrating that EVOS significantly en-
hances reconstructed details.

E. Implementation of Soft Mining

Background. Soft Mining is an acceleration method
for Neural Radiance Field (NeRF) that utilizes Langevin
Monte-Carlo sampling to form training batches during op-

timization. The sampling process can be formulated as:

xt+1 = xt + a∇ logQ (xt) + bηt+1, (9)

where xt represents sampled data at step t, a and b are hy-
perparameters, Q(x) denotes the L1 norm of the error, and
η ∼ N (0,1) is Gaussian noise. To mitigate training bias
introduced by importance sampling, they propose soft min-
ing to regulate the loss function:

L =
1

N

N∑
n=1

[
err (xn)

sg (Q (xn))
α

]
, where α ∈ [0, 1], (10)

where α controls mining softness (α = 0 for pure hard min-
ing, α = 1 for pure importance mining), err(x) is the L2
norm of the error, sg(·) is the stop gradient operator, and N
denotes the batch size. Further details are provided in the
original paper [21].
Parameter Tuning & Ablation Study. The official imple-
mentation of Soft Mining showed significant performance
degradation when applied to natural image fitting (Sec. 4.2),
likely due to fundamental differences between image fitting
and radiance field synthesis tasks. To ensure fair compari-
son, we conducted comprehensive parameter tuning and ab-
lation studies. Our investigation focused on three key com-
ponents: the softness parameter α, warmup iteration count,
and fuzzy indexing mechanism. Parameters a and b exhib-
ited minimal influence on performance; hence, we retained
their default values. Results in Table 11 demonstrate that
fuzzy indexing significantly degraded performance. Based
on empirical analysis, we determined optimal settings by



1k Iterations 2k Iterations 5k Iterations
Settings PSNR ↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Original 25.98 0.815 0.141 25.98 0.824 0.095 25.97 0.830 0.071

w/o Fuzzy Indexing 31.48 0.903 0.124 33.52 0.930 0.072 35.29 0.948 0.044

Hard (α = 0) 30.42 0.877 0.159 33.07 0.920 0.071 35.25 0.944 0.046
α = 0.1 30.67 0.884 0.148 33.21 0.923 0.069 35.27 0.946 0.045
α = 0.3 31.15 0.896 0.131 33.45 0.928 0.067 35.27 0.948 0.048
α = 0.5⋆ 31.49 0.903 0.124 33.52 0.931 0.072 35.31 0.948 0.045
α = 0.7 31.47 0.903 0.125 33.44 0.930 0.074 35.18 0.947 0.047
α = 0.9 31.17 0.899 0.131 33.18 0.928 0.079 34.79 0.944 0.052
Important (α = 1) 30.78 0.893 0.140 32.97 0.927 0.082 34.52 0.943 0.055

w/o warmup 30.98 0.895 0.140 33.21 0.928 0.076 35.18 0.947 0.045
warmup for 0.1k 31.34 0.901 0.131 33.32 0.928 0.076 35.15 0.946 0.047
warmup for 0.5k 31.51 0.903 0.124 33.43 0.929 0.073 35.22 0.947 0.046
⋆ The final α in our implementation.

Table 11. Results of empirical parameter tuning for Soft Mining. All experiments except Original are conducted with the basic improve-
ment of w/o Fuzzy Indexing. Other experimental settings follow Sec.4.2.

1k Iterations 2k Iterations 5k Iterations Time↓
Strategies PSNR ↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ (min)

Uniform. 27.14 0.802 0.305 28.77 0.851 0.212 30.14 0.886 0.139 4.76
EGRA [15] 27.10 0.799 0.309 28.80 0.850 0.214 30.32 0.885 0.140 6.17
Expan. [63] 27.21 0.790 0.303 28.47 0.831 0.241 29.67 0.862 0.183 5.05
Soft Mining [21] 27.80 0.819 0.274 29.29 0.859 0.137 30.73 0.888 0.136 6.94
EVOS 26.22 0.742 0.308 29.49 0.847 0.166 29.74 0.847 0.154 6.87

Table 12. Comparison of sampling strategies under extremely ultra-low selection ratio (β = 0.05). Green : the best performance.

disabling fuzzy indexing, setting α = 0.5, and maintaining
the original 1,000 warmup iterations.
Fuzzy Indexing Issue. Fuzzy Indexing serves as an en-
gineering preprocessing step rather than an algorithmic
component of soft mining. After LMC (Eq. 9), sampled
points (coordinates) are processed into bounded values w ∈
[0, 1] and subsequently scaled to the INR coordinate space,
typically through min-max normalization to [-1,1]. This
process can result in sampling coordinates beyond the scope
of available ground truth values. For instance, sampled
coordinates (5.52, 9.27) lack corresponding ground truth,
which is only available at discrete points like (5,9) or (6,10),
potentially lowering supervision accuracy. This fuzzy in-
dexing issue is particularly pronounced with limited train-
ing data, leading to significant performance degradation in
image fitting tasks while maintaining effectiveness in NeRF
applications.
How to Disable Fuzzy Indexing? To mitigate the per-
formance degradation caused by fuzzy indexing issues, we
disabled this step by regulating w to real coordinate value.
Specifically, after obtaining sampled value w, we first trans-

form it to coordinate space and round it to the nearest in-
teger (corresponding to real coordinates) before applying
INR’s min-max normalization. As shown in Table 11, re-
construction quality improves significantly after disabling
fuzzy indexing. More details can be found in our code.
Analysis for Degraded Performance. As shown in Ta-
ble 1, despite our optimized implementation, Soft Min-
ing’s performance remains unsatisfactory, particularly in
later training stages, falling below uniform sampling. We
attribute this limitation to LMC sampling mechanism’s in-
compatibility with fitting tasks involving smaller sampling
sets. A key distinction between general INR training (e.g.,
audio, text, image and shape fitting task) and NeRF training
lies in their training data volume. NeRF training typically
requires N ∼ 1010 points, calculated as:

N = (128 + 64)︸ ︷︷ ︸
points along a ray

× 1080× 768︸ ︷︷ ︸
pixels

× 100︸︷︷︸
views

∼ 1010. (11)

In standard NeRF training, each iteration uniformly sam-
ples 4096 × (128 + 64) ∼ 105 points per batch, represent-
ing 0.005% of total training data. Conversely, a 1080P im-



5 minutes 15 minutes 25 minutes
Strategies PSNR ↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Soft. [21] (β = 0.05) 30.19 0.878 0.156 31.57 0.901 0.106 32.01 0.907 0.092
Soft. [21] (β = 0.5) 31.48 0.903 0.124 34.02 0.936 0.062 35.14 0.947 0.046
EVOS (β = 0.5) 32.69 0.912 0.082 36.43 0.954 0.026 37.50 0.961 0.019

Table 13. Comparison of sampling strategies under fixed time budget. Reported times represent cumulative training duration across all
dataset samples. All experimental settings follow Sec. 4.2. Green : the best performance.

age contains only N ∼ 105 points, allowing INR fitting to
access all training data in each iteration without batch split-
ting. This smaller sampling space and larger sampling ratio
conflict with LMC sampling’s design paradigm, potentially
explaining Soft Mining’s degraded performance in our ex-
periments. To validate this hypothesis, we set sampling ra-
tio β = 0.05 to simulate batch training in image fitting.
Results in Table 12 support our hypothesis, with Soft Min-
ing outperforming other methods, including EVOS, under
ultra-low sampling ratios. However, as shown in Table 13,
despite this advantage, Soft Mining’s performance remains
inferior to EVOS under equivalent time budgets for general
INR acceleration.

F. Implementation of EGRA & Expan.
We reimplemented EGRA [15] and Expansive Supervi-
sion (Expan.) [63] following their algorithmic designs and
hyperparameter settings, as official implementations were
unavailable. More details can be found in our released code.

G. Compatibility for Different Scheduler
Settings. We further evaluated EVOS with linear and co-
sine increment schedulers. The linear scheduler increases
the selection ratio from 0% to 100% across iterations, with
selection intensity q = N

T , where T denotes total iterations
and N represents total coordinates. The cosine scheduler
implementation follows [61]. All other experimental set-
tings remain consistent with Sec. 4.2.
Results. Results for linear and cosine schedulers are pre-
sented in Table 14 and Table 15, respectively. With the
linear increment scheduler, EVOS reduces training time by
36.24% while achieving a 1.26 dB gain in PSNR. Similarly,
with the cosine increment scheduler, it achieves a 36.49%
reduction in training time with a 1.20 dB PSNR improve-
ment. These results demonstrate EVOS’s robust perfor-
mance across different scheduling strategies.

H. Compatibility for Different Selection Ratio
Settings. We investigated the impact of selection ratio β
under constant scheduler by evaluating β = {0.3, 0.7}. Re-
sults for β = 0.5 are presented in Table 1 (without under-

Figure 10. Gt(τ, σ) curves across iterations with τ = {1, 25, 50}
and σ = {0.1, 0.5}. Blue and Purple curves represent σ = 0.1
and σ = 0.5, respectively.

line). All other experimental settings remain consistent with
Sec. 4.2.
Results. Results for selection ratios of 30% and 70% are
presented in Table 16 and Table 17, respectively. Our
method maintains efficiency improvements with 70% se-
lection ratio; however, performance degrades with a lower
sampling intensity (30%), where despite greater time reduc-
tion, it fails to surpass standard training performance.

I. Empirical Study for Designing Γ(t)

In Section 3.2, we introduced a linear increasing scheduler
(Eq. 2) for key iterations to balance performance and effi-
ciency, motivated by the observed gradual linear increase in
distribution changes of D(Fθ(x),y) across iterations. Here,
we detail our analysis of the fitness distribution dynamics
that guided the design of Γ(t).
Measuring Distribution Changes in D(Fθ(x),y). We de-
fine the distribution change of Dt(Fθ(x),y) at step t as
Gt(τ, σ):

Gt(τ, σ) =
|x̃σ

t ∪ x̃σ
t−τ |

|x̃σ
t |

, (12)



1k Iterations 2k Iterations 5k Iterations Time↓
Strategies PSNR ↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ (min)

Standard 31.06 0.899 0.123 34.34 0.944 0.042 37.10 0.964 0.021 180.45

Uniform. 29.84 0.874 0.175 33.23 0.931 0.062 37.20 0.963 0.021 111.30
EGRA [15] 29.85 0.873 0.175 33.27 0.930 0.062 37.11 0.963 0.021 113.21
Expan. [63] 30.80 0.888 0.133 33.79 0.934 0.053 37.19 0.962 0.023 136.23

INT [61] (incre.) 31.68 0.889 0.129 31.79 0.890 0.103 37.23 0.963 0.021 129.41
INT [61] (dense.) 31.68 0.889 0.129 34.55 0.937 0.052 37.21 0.963 0.019 177.38

EVOS (proposed) 32.26 0.894 0.094 35.95 0.945 0.038 38.36 0.968 0.019 115.05

Table 14. Comparison of sampling strategies with linear increment scheduler. Green : the best performance.

1k Iterations 2k Iterations 5k Iterations Time↓
Strategies PSNR ↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ (min)

Standard 31.06 0.899 0.123 34.34 0.944 0.042 37.10 0.964 0.021 180.45

Uniform. 29.54 0.868 0.188 33.00 0.928 0.068 37.11 0.962 0.023 110.81
EGRA [15] 29.54 0.866 0.189 33.08 0.928 0.066 37.27 0.964 0.0194 112.88
Expan. [63] 30.53 0.881 0.140 33.63 0.931 0.056 37.34 0.963 0.020 126.98

INT [61] (incre.) 31.68 0.882 0.132 30.81 0.869 0.138 37.22 0.963 0.019 128.77
INT [61] (dense.) 31.68 0.882 0.132 34.67 0.935 0.055 37.17 0.962 0.020 175.95

EVOS (proposed) 31.57 0.881 0.106 35.63 0.941 0.041 38.30 0.968 0.016 114.60

Table 15. Comparison of sampling strategies with cosine increment scheduler. Green : the best performance.

where
x̃σ
t = argmax

{x̃}σN⊆{x}N

(||Fθ(x)− y||︸ ︷︷ ︸
Dt(Fθ(x),y)

). (13)

Here, τ represents the measurement interval, σ ∈ (0, 1) de-
notes the sampling intensity for measurement, and N is the
total number of coordinates in set x. A higher Gt(τ, σ) in-
dicates a larger intersection ratio, implying minimal distri-
bution change, and vice versa.
Settings & Results. We conducted experiments using stan-
dard training without sampling-based acceleration, follow-
ing the settings in Sec. 4.2. We plotted Gt(τ, σ) curves
across iterations with τ = {1, 25, 50} and σ = {0.1, 0.5}.
Results in Fig. 10 demonstrate that Gt(τ, σ) exhibits a
gradual linear decrease across various settings as iterations
progress. This increasing trend in distribution changes of
D(Fθ(x),y) validates our design choice for Γ(t) in Eq. 2.



1k Iterations 2k Iterations 5k Iterations Time↓
Strategies PSNR ↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ (min)

Standard 31.06 0.899 0.123 34.34 0.944 0.042 37.10 0.964 0.021 180.45

Uniform. 29.71 0.872 0.175 32.42 0.921 0.078 34.92 0.946 0.037 58.24
EGRA [15] 29.73 0.871 0.175 32.49 0.920 0.077 35.01 0.946 0.037 61.24
Expan. [63] 30.60 0.883 0.125 32.92 0.920 0.061 35.09 0.943 0.035 58.46
Soft. [21] 30.77 0.891 0.146 32.68 0.921 0.087 34.43 0.941 0.055 66.31

INT [61] (incre.) 31.74 0.890 0.121 26.62 0.738 0.289 29.45 0.832 0.162 85.13
INT [61] (dense.) 31.74 0.890 0.121 34.40 0.926 0.062 36.72 0.951 0.037 125.17

EVOS (proposed) 31.87 0.891 0.097 35.14 0.939 0.037 36.24 0.948 0.029 63.71

Table 16. Comparison of sampling strategies with constant increment scheduler (β = 0.3). Green : the best performance.

1k Iterations 2k Iterations 5k Iterations Time↓
Strategies PSNR ↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ (min)

Standard 31.06 0.899 0.123 34.34 0.944 0.042 37.10 0.964 0.021 180.45

Uniform 30.72 0.893 0.134 33.89 0.939 0.048 36.85 0.961 0.021 126.83
EGRA [15] 30.75 0.892 0.134 33.96 0.939 0.047 36.92 0.961 0.020 129.30
Expan. [63] 31.28 0.899 0.116 34.34 0.940 0.042 37.10 0.961 0.019 127.76
Soft. [21] 31.89 0.908 0.113 33.98 0.935 0.065 35.79 0.952 0.040 139.05

INT [61] (incre.) 31.37 0.902 0.118 33.81 0.929 0.057 37.17 0.957 0.027 143.86
INT [61] (dense.) 31.37 0.902 0.118 34.42 0.941 0.0477 36.93 0.956 0.029 233.10

EVOS (proposed) 32.87 0.919 0.078 36.27 0.956 0.027 37.96 0.965 0.019 133.05

Table 17. Comparison of sampling strategies with constant increment scheduler (β = 0.7). Green : the best performance.



References
[1] The Stanford 3D Scanning Repository. https://

graphics . stanford . edu / data / 3Dscanrep/,
2007. Accessed: 2024-11. 2

[2] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge
on single image super-resolution: Dataset and study. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition workshops, pages 126–135, 2017. 5, 2

[3] Hmrishav Bandyopadhyay, Ayan Kumar Bhunia,
Pinaki Nath Chowdhury, Aneeshan Sain, Tao Xiang,
Timothy M. Hospedales, and Yi-Zhe Song. Sketchinr: A
first look into sketches as implicit neural representations.
CoRR, abs/2403.09344, 2024. 1, 2

[4] Zhicheng Cai, Hao Zhu, Qiu Shen, Xinran Wang, and Xun
Cao. Batch normalization alleviates the spectral bias in coor-
dinate networks. In CVPR, pages 25160–25171. IEEE, 2024.
3

[5] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt,
Julian Straub, Steven Lovegrove, and Richard Newcombe.
Deep local shapes: Learning local sdf priors for detailed 3d
reconstruction. In Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XXIX 16, pages 608–625. Springer, 2020. 2

[6] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European con-
ference on computer vision, pages 333–350. Springer, 2022.
1, 2, 3

[7] Chia-Hao Chen, Ying-Tian Liu, Zhifei Zhang, Yuan-Chen
Guo, and Song-Hai Zhang. Joint implicit neural represen-
tation for high-fidelity and compact vector fonts. In ICCV,
pages 5515–5525. IEEE, 2023. 2

[8] Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim,
and Abhinav Shrivastava. Nerv: Neural representations for
videos. In NeurIPS, pages 21557–21568, 2021. 2

[9] Xiang Chen, Jinshan Pan, and Jiangxin Dong. Bidirectional
multi-scale implicit neural representations for image derain-
ing. In CVPR, pages 25627–25636. IEEE, 2024. 1

[10] Yinbo Chen and Xiaolong Wang. Transformers as meta-
learners for implicit neural representations. In ECCV (17),
pages 170–187. Springer, 2022. 1, 2

[11] Yann N. Dauphin, Razvan Pascanu, Çaglar Gülçehre,
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